История астрономии. Великие открытия с древности до Средневековья - стр. 49
Аналогичным образом, дополнительная сфера сняла ошибки в теории Венеры. Если Р>1Р>2 = 45°, то максимальная элонгация равна 47°40′, что очень близко к истинной величине; также объясняется и разная скорость планеты в четырех частях синодического обращения; так как в изображенной выше кривой переход от одной тройной точки к другой занимает одну четверть периода, тот же переход назад – еще одну четверть, а очень медленное движение по маленьким петлям в конце кривой занимает оставшееся время. Что касается Меркурия, то теория Евдокса и без того была уже достаточно верна и, без сомнения, дополнительная сфера лишь ее усовершенствовала.
В солнечную теорию Каллипп ввел две новые сферы, чтобы учесть неравномерное движение Солнца по долготе, открытое примерно за сто лет до того Метоном и Евктемоном благодаря неравной продолжительности времен года. В так называемом Папирусе Евдокса, который мы уже упоминали, мы находим значения продолжительности времен года, принятые Каллиппом (взятые из парапегмы, или метеорологического календаря Гемина), и, хотя значения указываются только в целых числах дней (95, 92, 89, 90, начиная с весеннего равноденствия), в каждом случае ошибка составляет менее одного дня, притом что погрешность соответствующих значений, определенных Евктемоном около 430 года до н. э., составляет от ЕД до 2 дней. Таким образом, очевиден прогресс в наблюдениях за Солнцем в Греции, произошедший за век, который закончился около 330 года до н. э. Добавив еще две сферы к трем сферам Евдокса, Каллипп должен был лишь следовать тому же принципу, которым Евдокс объяснял неравномерность синодического движения планет, и фактически гиппопеда длиной 4° и 2′ шириной самым удовлетворительным образом дает то самое необходимое максимальное неравенство 2°. Точно так же увеличилось на две и количество лунных сфер, и, хотя Симпликий говорит о причине не очень ясно, едва ли можно сомневаться, что имеется в виду причина, аналогичная той, которую он только что привел для Солнца. Иными словами, Каллипп должен был знать об эллиптическом неравенстве движения Луны. В самом деле, вряд ли он мог его не заметить, даже если просто ограничился изучением лунных затмений, не наблюдая за движением Луны в другое время, поскольку интервалы между затмениями по сравнению с соответствующими долготами (выведенными по долготам Солнца) сразу же показывают, насколько движение Луны по долготе далеко от равномерного. Гиппопеда 12° в длину составит лишь дважды по 9′ в ширину и потому значительно не повлияет на широту, а средняя величина неравенства составит 6°. Усовершенствованная теория, таким образом, была не хуже любой другой вплоть до открытия эвекции.