Исследуем. Проектируем. Предлагаем - стр. 7
Описание механизма мне показалось сложным, вследствие чего я так и не смог представить принцип его работы. Также я понял, что в устройстве есть определенная сложность с вычислением десятков результата. Так, в описании изобретения есть фразы, говорящие о необходимости проведения дополнительных операций методом устного счета: «сбоку в каждом ряду, кроме первого, сделаны прорези для вспомогательного числа v>i, используемого для устных вычислений десятков».
Таким образом, моей целью стало создание понятного теоретического и практического материала, который бы мог использоваться на уровне школьных занятий, а принцип работы устройства подходил и для массового использования.
1.3. Приведение таблицы умножения к ее нумерологическому виду и анализ полученного результата
Давайте вспомним, как строится всем известная таблица умножения (таблица Пифагора). Для ее представления необходимо построить квадрат, в левом столбце и в верхней строке которого идут числа от 1 до 9. Умножая каждое число из верхней строки на каждое число из левого столбца и записывая результат на пересечении, мы получим квадрат, состоящий из 81 клетки. Таким образом, мы видим в каждой клетке таблицы результат умножения чисел из левого столбца и верхней строки.
Теперь приведем таблицу умножения к нумерологическому квадрату (см. рис.). Для этого числа в каждой ячейке таблицы необходимо нумерологически сократить, т. е. преобразовать с помощью сложения входящих в состав числа цифр до однозначных. Например, число 12 = 1 + 2 = 3, а число 49 = 4 + 9 = 13 = 1 + 3 = 4.