Искусственный интеллект. Машинное обучение - стр. 31
– Метод k средних (k-Means)
– Иерархическая кластеризация
– DBSCAN
Рассмотрим их подробнее.
Метод k-Means (k-средних) – это один из наиболее распространенных методов кластеризации. Он основан на простой идее разделения набора данных на k кластеров, где каждый кластер представляет собой группу объектов, близких по среднему расстоянию до центроидов кластеров. Алгоритм k-Means состоит из нескольких шагов. Сначала случайным образом выбираются k центроидов. Затем каждый объект присваивается ближайшему центроиду, после чего центроиды перемещаются в центры объектов, принадлежащих кластерам. Этот процесс повторяется до тех пор, пока центроиды и кластеры не стабилизируются или не будет достигнуто максимальное количество итераций.
Преимущества метода k-Means включают его простоту реализации, эффективность на больших объемах данных и масштабируемость. Однако у метода также есть недостатки. В частности, требуется заранее знать количество кластеров, а также алгоритм чувствителен к начальному расположению центроидов и неустойчив к выбросам.
Метод k-Means является широко используемым инструментом для кластеризации данных благодаря своей простоте и эффективности, но при его использовании следует учитывать его ограничения и подходить к выбору количества кластеров с осторожностью.
Пример 1
Для этого примера давайте использовать набор данных Iris, который содержит информацию о различных видах ирисов. Наша задача будет состоять в кластеризации этих ирисов на основе их характеристик.
Описание задачи:
Набор данных Iris содержит четыре признака: длину и ширину чашелистиков и лепестков ирисов. Мы будем использовать эти признаки для кластеризации ирисов на несколько групп.
Описание хода решения:
1. Загрузка данных: Мы загрузим данные и посмотрим на них, чтобы понять их структуру.
2. Предварительная обработка данных: Если потребуется, мы выполним предварительную обработку данных, такую как масштабирование функций.
3. Кластеризация: Мы применим выбранный метод кластеризации (например, k-средних или иерархическую кластеризацию) к данным.
4. Визуализация результатов: Для лучшего понимания кластеризации мы визуализируем результаты, используя графики.
Давайте перейдем к коду.
Для начала нам нужно загрузить набор данных Iris. Мы будем использовать библиотеку `scikit-learn`, которая предоставляет доступ к этому набору данных. Загрузим данные и посмотрим на них.
```python
from sklearn.datasets import load_iris
# Загрузка данных Iris
iris = load_iris()
# Просмотр информации о данных
print(iris.DESCR)
```
Этот код загружает данные Iris и выводит их описание, чтобы мы могли понять структуру набора данных и его признаки.
После того, как мы ознакомились с данными, мы можем приступить к кластеризации. Для этого давайте выберем метод кластеризации, например, метод k-средних.
```python
from sklearn.cluster import KMeans
# Инициализация модели k-средних
kmeans = KMeans(n_clusters=3, random_state=42)
# Обучение модели на данных
kmeans.fit(iris.data)
# Получение меток кластеров для каждого объекта
labels = kmeans.labels_
```
Здесь мы инициализируем модель k-средних с 3 кластерами и обучаем её на данных Iris. Затем мы получаем метки кластеров для каждого объекта.
Наконец, мы можем визуализировать результаты кластеризации, чтобы лучше понять структуру данных.