Искусственный интеллект. Машинное обучение - стр. 11
9. Нейронные сети глубокого обучения (Deep Learning): Это подкласс нейронных сетей, который состоит из множества слоев нейронов, включая скрытые слои, обеспечивающие более высокую сложность обучения. Глубокие нейронные сети широко применяются в обработке изображений, обработке естественного языка, а также в других областях, где требуется высокий уровень анализа и понимания данных.
10. Наивный Байесовский классификатор (Naive Bayes Classifier): Этот метод основан на принципе теоремы Байеса и предполагает независимость признаков, что делает его быстрым и простым для обучения. Наивный Байесовский классификатор часто используется в задачах классификации текстовых данных, таких как анализ тональности текстов, спам-фильтрация и категоризация документов.
11. Метод главных компонент (Principal Component Analysis, PCA): Это метод для снижения размерности данных, сохраняя при этом наибольшее количество информации. PCA находит новые признаки (главные компоненты), которые являются линейными комбинациями исходных признаков и позволяют сократить количество признаков, сохраняя при этом основные характеристики данных.
12. Метод оптимизации гиперпараметров (Hyperparameter Optimization): Это процесс подбора наилучших гиперпараметров модели, которые не могут быть изучены во время обучения модели, но влияют на ее производительность. Методы оптимизации гиперпараметров помогают выбрать оптимальные значения для параметров модели, улучшая ее обобщающую способность и точность предсказаний.
Эти методы и алгоритмы представляют лишь часть широкого спектра техник и подходов, используемых в машинном обучении. В зависимости от конкретной задачи и характеристик данных, могут применяться различные комбинации этих методов для достижения оптимальных результатов.
Таксономия задач в машинном обучении относится к классификации задач в соответствии с их характеристиками и типами обучения, которые они включают. Эта классификация помогает структурировать и понять различные типы задач, с которыми сталкиваются исследователи и практики машинного обучения. Она обычно основана на способе представления данных, наличии или отсутствии учителя и типе обратной связи, которую модель получает в процессе обучения.
В данном контексте три основных категории задач машинного обучения выделяются в свете их взаимодействия с данными:
Обучение с учителем (Supervised Learning)
Обучение с учителем (Supervised Learning) представляет собой один из основных типов задач в машинном обучении, при котором модель обучается на основе набора обучающих данных, где каждый пример данных сопровождается правильным ответом или меткой. Этот ответ обычно представляет собой целевую переменную, которую модель должна научиться предсказывать для новых данных. В основе обучения с учителем лежит идея "учителя", который предоставляет модели правильные ответы, по которым модель может корректировать свое поведение.
Примерами задач классификации, решаемых с помощью обучения с учителем, являются определение категории электронного письма (спам или не спам), классификация изображений (например, определение, содержит ли изображение кошку или собаку) и определение типа опухоли на медицинских изображениях.