Искусственный интеллект и Машинное обучение. Основы программирования на Python - стр. 8
Искусственный интеллект
Все лунные модули, которые бороздят поверхность Луны, используют алгоритмы ИИ. Их не надо контролировать каждую секунду, они сами принимают решения как объезжать препятствия и как собрать грунт в том или ином труднодоступном месте.
ИИ применяется и в беспилотных автомобилях. С помощью множества сенсоров, такие автомобили анализируют находящуюся вокруг них обстановку, определяют другие движущиеся машины, пешеходов, знаки дорожного движения, разметку, выбирают кратчайший путь и т.д.
Наше взаимодействие с голосовыми помощниками. Когда мы просим Алексу, Сири, или Алису от Яндекса сделать или найти что-то, они конвертируют наш голос в команды, обрабатывают их и выдают то, что нам необходимо.
Кроме голосовых помощников, очень развиты сейчас чат-боты, когда вы можете переписываться с компьютером, и он будет отвечать на ваши запросы. А в последнее время участились и звонки роботов на наши мобильные телефоны. Они могут предлагать какие-то рекламные акции или даже расспрашивать у вас информацию, например, когда вы планируете погасить кредитную задолженность. Такие роботы уже заменили многих сотрудников колл-центров.
Машинное обучение
Улучшение выдачи результатов поиска в Google. Когда ты вбиваешь какой-то запрос в поисковой строке, тебе выводится несколько ссылок. Если ты заходишь по одной из ссылок на первой странице, и просматриваешь страницу и проводишь там какое-то время изучая и читая информацию на этой странице, Google понимает, что ты нашел что искал. Когда заходишь на вторую, третью страницу, и видишь, что все это не то, то Google понимает, что это менее нужная информация, и в следующий раз когда другой человек зайдет на Google и спросит его об этом же, то Google будет знать, что лучше выдать в первой строчке на первой странице.
Решение о выдаче кредита банком. Компьютер анализирует большое количество параметров потенциального заемщика и потом распределяет его в категорию хороший или плохой заемщик, либо дает ему конкретный кредитный скоринг. Все это происходит на основе кредитной истории предыдущих заемщиков и как они схожи с потенциальным новым заемщиком. Выборка постоянно дополняется историей каждого нового заемщика, расплатился ли он с кредитом и выплатил ли его вовремя, она обновляется, и также обновляется и алгоритм, находятся новые закономерности, которые позволяют принимать правильные решения о выдаче кредита новому заемщику.
Выбор места для ритейла. В ритейле одним из самых главных факторов, которые влияют на прибыльность бизнеса, является местоположение. У сети кофеен Старбакс имеется около 30 000 локаций по всему миру. Вы накопили большой объем информации о том, в каких местах продажи лучше. На основе этой информации вы можете составить алгоритм по выбору наиболее удачного места в новой локации. Ваши переменные могут включать геохарактеристики (расстояние до центра города, до метро, цена за квадратный метр), трафик (число маршрутов наземного транспорта в разных радиусах от локации) и наличие тех или иных объектов рядом, например, торговых центров, бизнес-центров, домов, школ и банков.
Глубокое обучение
Очень часто ГО используется для распознавания объектов на изображениях. Кроме того, с помощью ГО черно-белые изображения или фильмы можно сделать цветными. До этого компьютер уже обработал большое количество данных и информации в интернете либо в базе данной, которую ему предоставили для этого, и он уже знает различные оттенки серого и может легко понять в какой цвет необходимо преобразить тот или иной пиксель изображения.