Размер шрифта
-
+

Искусственный интеллект. Большие данные. Преступность - стр. 8

Успехи ИИ связаны с тремя основными факторами. Во-первых, с использованием новой высокопроизводительной элементной базы. Во-вторых, с применением новых программных решений, базирующихся на сложной комбинаторике и машинном обучении. В-третьих, с широким использованием робототехники как периферийных устройств ИИ, аналогичным периферийным устройствам человека, типа рук, ног, по отношению к мозгу.

Хотя в последние 10 лет ИИ развивался экспоненциально, вряд ли следует ожидать таких же темпов прогресса и в перспективе. Как правило, технические нововведения развиваются по гиперциклу Гартнера. При гиперцикле после долгого периода созревания наступает этап экспоненциальных перемен. В результате система достигает уровня зрелости и определенное время оказывается как бы на плато, раздвигаясь вширь, а не развиваясь вглубь. Затем наступает спад, связанный с насыщением данной технологией наиболее продвинутых пользователей. Однако спад является недолговременным и сменяется умеренным ростом, который характерен для любой зрелой технологии. Вряд ли есть основания полагать, что ИИ не будет развиваться в рамках гиперцикла. Сегодня центральной задачей ИИ является создание эффективных гибридных систем, где ИИ взаимодействует с человеком.

§ 2. ИИ, распознание угроз и оценка рисков

Магистральным направлением использования ИИ являются вопросы безопасности. При решении этой группы вопросов как в никакой другой сфере важно заблаговременно распознавать угрозы и оценивать риски. Распознавание угрозы мало чем отличается от распознавания лица. Любая угроза имеет определенный устойчивый паттерн, который может быть выражен через набор числовых характеристик. Поскольку вопросы распознавания в решающей степени зависят от скорости и полноты вычислений, то ИИ как комбинаторная машина, позволяет распознавать угрозы намного быстрее и точнее, чем человек.

Правда, есть одно важное ограничение. ИИ способен распознавать лишь те угрозы, которые имели место в прошлом. Поскольку в основе распознавания лежит машинное обучение, то фактически ИИ на числовых массивах прошлого устанавливает профиль угрозы, а потом ищет этот профиль в поступающих информационных потоках.

До сих пор остается открытым вопрос, может ли человек распознавать угрозы, которых ранее не существовало. На этот счет имеются различные точки зрения. Большинство психологов занимают точку зрения, что человек способен к этому. В то же время специалисты когнитивных наук полагают, что нет принципиальной разницы между переработкой информации у машины и человека, и соответственно, человек не может решать задачи, которые не решает машина.

Авторы доклада Центра новой американской безопасности полагают, что человек обладает способностью к решению задача, не доступных, по крайней мере, в настоящее время. Например, человек способен изменить правила игры, в то время как ИИ всегда играет по правилам. Однако применительно к новым, ранее не существовавшим угрозам, на сегодняшний день не существует однозначного ответа на вопрос: способны ли люди распознавать угрозы, с которыми до этого никогда не сталкивались.

Создание ИИ носит феноменальный характер. Существует множество различных программноаппаратных комплексов, каждый из которых уникален, а потому феноменален. В отличие от персональных компьютеров, планшетов, смартфонов и т. п. ИИ носят единичный, в крайнем случае, мелкосерийный, но отнюдь не массовый характер. Если явление не носит массового характера, то оно не может быть описано количественно. Соответственно прогноз тенденций в области ИИ – это всегда качественный прогноз.

Страница 8