Голая статистика. Самая интересная книга о самой скучной науке - стр. 16
Есть, правда, одна проблема. Мой быстрый подсчет технически правилен и совершенно неверен с точки зрения ответа на интересующий нас вопрос. Начнем хотя бы с того, что в приведенных выше цифрах отсутствует поправка на инфляцию. (Величина дохода на душу населения 7787 долларов в 1980 году составляет примерно 19 600 долларов в 2010-м.) Такой корректив внести относительно просто. Более серьезная проблема заключается в том, что средний доход в Америке не равняется доходу среднего американца. Попытаемся расшифровать это утверждение.
Чтобы вычислить величину дохода на душу населения, мы берем весь национальный доход и делим его на численность населения. Однако полученный таким образом показатель абсолютно ничего не говорит нам о том, кто и сколько при этом зарабатывает – хоть в 1980 году, хоть в 2010-м. Как сказали бы участники акции Occupy Wall Street, взрывообразный рост доходов 1 % самых богатых людей Америки способен существенно повысить значение дохода на душу населения, ничего при этом не изменив в карманах остальных 99 % американцев. Иными словами, средний доход может повышаться без помощи среднего класса.
Как и в случае бейсбольной статистики, мне хотелось узнать мнение авторитетного эксперта о том, как нам следовало бы измерять экономическое благосостояние американского среднего класса. Я спросил у двух известных специалистов по трудовым отношениям, в том числе у ведущего экономического советника президента Обамы, какие описательные статистики они использовали бы для оценки экономического благополучия типичного американца. Вы узнаете их ответы после того, как ознакомитесь с кратким обзором описательных статистик и лучше уясните их смысл.
Будь то бейсбол, доход или что-то еще, самая фундаментальная задача при работе с данными – обобщить их огромные массивы. Численность населения Соединенных Штатов составляет примерно 330 миллионов человек. Электронная таблица, в которой указывались бы фамилия и история доходов каждого американца, содержала бы всю информацию, которая могла потребоваться для оценки экономического благосостояния страны, однако эта информация была бы настолько громоздкой, что извлечь из нее хоть какую-то пользу было бы практически невозможно. Ирония судьбы заключается в том, что чем большим количеством данных мы располагаем, тем труднее выделить в них главное. Поэтому мы вынуждены прибегать к упрощениям. Мы выполняем вычисления, которые сводят сложный массив данных к нескольким числам, описывающим эти данные, точно так же как пытаемся оценить разноплановую программу выступления гимнаста на Олимпийских играх одним числом: 9,8 балла.
Плюс состоит в том, что описательные статистики дают нам некое обобщенное и осмысленное представление исходного явления. О чем, собственно, и идет речь в этой главе. Минус же в том, что любое упрощение порождает манипулирование. Описательные статистики можно сравнить с анкетами на сайтах знакомств: технически они точны и тем не менее сильно вводят в заблуждение.
Допустим, сидя на работе, вы от нечего делать бродите по интернету и наталкиваетесь на онлайн-дневник известной светской львицы Ким Кардашьян, в котором она рассказывает о своей «долгой» (целых семьдесят два дня!) супружеской жизни с профессиональным баскетболистом Крисом Хэмфри. И вот в тот самый момент, когда вы добрались до описания седьмого дня их супружеской жизни, в комнату неожиданно заходит ваш босс с двумя огромными папками данных. В одной из папок собрана информация о гарантийных претензиях по каждому из 57 334 лазерных принтеров, которые ваша фирма продала в прошлом году. (По каждому из проданных лазерных принтеров перечисляются все проблемы с качеством, зафиксированные в течение гарантийного периода.) В другой содержится такая же информация по каждому из 994 773 лазерных принтеров, которые продал за тот же период ваш главный конкурент. Босс хотел бы сравнить качество принтеров вашей компании с качеством принтеров конкурента.