Голая статистика. Самая интересная книга о самой скучной науке - стр. 11
Выявление важных зависимостей (работа статистика-детектива)
Действительно ли курение вызывает рак? У нас есть ответ на этот вопрос, однако процесс его получения был не так прост, как может показаться на первый взгляд. Научный метод диктует, что при проверке той или иной гипотезы необходимо провести управляемый эксперимент, в ходе которого именно интересующая нас переменная (например, курение) должна определять разницу между экспериментальной и контрольной группами. Если между двумя этими группами в чем-то (в нашем случае – в частоте возникновения рака легких) прослеживается заметная разница, то можно с уверенностью заключить, что к такому результату привела именно искомая переменная. Однако мы не имеем права ставить над людьми подобные эксперименты. Если, согласно нашей рабочей гипотезе, курение является причиной раковых заболеваний, то было бы неэтично, скажем, разделить недавних выпускников колледжа на две группы, курящих и некурящих, и спустя двадцать лет со дня окончания колледжа, когда они соберутся отметить эту круглую дату, выяснять, кто из них заболел раком легких, а кто – нет. (Управляемые эксперименты над людьми оправданны, если нужно проверить, поможет ли новое лекарство или метод лечения улучшить состояние их здоровья. Но когда речь идет о вероятности летального исхода и нам это хорошо известно, мы не имеем права подвергать людей опасности лишь ради того, чтобы подтвердить или опровергнуть свое предположение.)[8]
Итак, нам не стоит проводить весьма сомнительный в этическом плане эксперимент, чтобы изучить последствия курения. А не проще ли вместо всей этой заумной методологии взять и сравнить во время встречи по случаю двадцатилетнего юбилея со дня окончания колледжа процент заболевания раком у бывших выпускников – курильщиков и некурильщиков?
Не проще! Курильщики и некурильщики, скорее всего, будут отличаться не только своим отношением к курению. Например, не исключено, что у курильщиков выработался ряд специфических привычек, таких как тяга к алкоголю или склонность к перееданию, что тоже негативно сказывается на их здоровье. Поэтому мы не можем быть твердо убеждены, что их нездоровый вид – следствие именно курения, а не каких-либо других пагубных пристрастий. Кроме того, у нас возникла бы серьезная проблема с данными, на которых основывается наш анализ. Курильщики, действительно заболевшие раком (не товоря уже о тех, кто к тому времени от него умер), вряд ли придут на празднование юбилея. В результате на точности любого анализа состояния здоровья тех, кто пришел (касается ли этот анализ вреда курения или чего-либо другого), существенно скажется то обстоятельство, что в этом праздновании, скорее всего, примут участие лишь те, кто не испытывает особых проблем со здоровьем. Чем больше лет пройдет с момента окончания учебы в колледже (скажем, будет отмечаться сорокалетний или пятидесятилетний юбилей), тем меньшей будет точность анализа.
Мы не можем относиться к людям как к подопытным кроликам. В итоге статистика оказывается сродни профессии детектива. Исходные данные могут подсказать нам модели, которые в конечном счете способны привести к правильным выводам. Вы наверняка смотрели увлекательные полицейские сериалы наподобие CSI: New York, где очень симпатичные детективы и эксперты-криминалисты скрупулезно исследуют всевозможные «мелочи»: ДНК из остатков слюны на сигаретном окурке, отпечатки зубов на яблоке, кусочек волокна из автомобильного коврика, – а затем используют полученные улики для поимки преступника. «Изюминка» сериала заключается в том, что поначалу эксперты не располагают традиционными вещественными доказательствами (например видеозаписью камер наружного наблюдения или живым свидетелем преступления), позволяющими им изобличить «плохого парня», поэтому им приходится прибегать к научным методам и логическим умозаключениям. Статистика, по сути, идет тем же путем. Исходные данные дают нам некое хаотическое нагромождение подсказок и намеков – так сказать, сцену преступления. А статистический анализ их упорядочивает и систематизирует таким образом, чтобы на их основе можно было сделать логический вывод.