Размер шрифта
-
+

Эволюция. Классические идеи в свете новых открытий - стр. 44

в хромосоме реципиента. Говоря упрощенно, реципиент вырезает из своей хромосомы кусочек и заменяет его похожим кусочком чужой ДНК. Как правило, это происходит при обмене ДНК между близкими родственниками, чьи геномы мало отличаются друг от друга. Если участки ДНК различаются сильно, гомологичная рекомбинация между ними технически невозможна (в гомологичной рекомбинации задействован принцип комплементарности, но мы не будем вдаваться в молекулярные подробности)[38].

Механизм гомологичной рекомбинации – очень древний. Он наверняка был у Луки – последнего общего предка всего живого. Он должен был появиться задолго до Луки, еще на заре РНК-мира. Используется он не только для перетасовки похожих фрагментов ДНК, но и для более очевидной и повседневной задачи, а именно для починки (репарации) повреждений ДНК, таких как разрывы двойной спирали. При этом фрагмент ДНК, гомологичный разрушенному, используется в качестве «заплатки» (да простят нас молекулярные биологи за такое вульгарное упрощение сложного процесса!).

О горизонтальном переносе генов (ГПГ) мы говорили в книге «Рождение сложности». Эволюционная роль этого явления огромна: микробы и одноклеточные эукариоты приобрели множество нужных признаков, заимствуя чужие гены. Геном любой бактерии прямо-таки напичкан явно «неродными», но при этом крайне полезными генами. Один из примеров – появление у цианобактерий способности к кислородному фотосинтезу. Событие, перевернувшее мир, превратившее Землю из унылой бескислородой «планеты микробов» в царство разнообразных, удивительных и сложных «высших» форм жизни. Как оно произошло? Исключительно благодаря горизонтальному переносу. Кислородному фотосинтезу предшествовал фотосинтез бескислородный, более простой, требующий участия одного белкового комплекса – «фотосистемы». Предки цианобактерий умудрились скомбинировать в своем геноме сразу две слегка различающиеся фотосистемы. Одна, вероятно, была у них «своя», а вторую они позаимствовали у другого бескислородного фотосинтетика. Комбинация двух фотосистем в одной клетке позволила цианобактериям перейти к кислородному фотосинтезу – процессу более сложному, но зато и более перспективному. Для бескислородного фотосинтеза требуются дефицитные вещества – доноры электрона, например сероводород или двухвалентное железо. При кислородном фотосинтезе донором электрона служит обычная вода – колоссальное облегчение!

Все это хорошо, но есть одна проблема. То, что мы видим в геномах прокариот, – все эти заимствованные у других микробов полезные гены – не результат ГПГ в чистом виде, а результат комбинации ГПГ и отбора. Мы видим только удачные переносы, потому что неудачные отсеяны отбором. Сколько их было? Точную цифру назвать трудно, но наверняка гораздо больше, чем удачных. Хватать без разбора чужие фрагменты ДНК и встраивать их в свой геном – занятие крайне рискованное. Шанс приобрести что-то полезное при этом ничтожно мал по сравнению с шансами повредить свой геном, испортить важный ген ненужной вставкой или заменой, приобрести что-то несовместимое с имеющимися у вас генами, заполучить смертоносный вирус или активный мобильный элемент, который начнет размножаться и прыгать как сумасшедший и превратит ваш геном в бессмысленную лапшу.

Страница 44