Евклидово окно. История геометрии от параллельных прямых до гиперпространства - стр. 33
Мы уже говорили, как Пифагор открыл квадрат с длиной стороны в единицу, у которого диагональ равна квадратному корню из двух, а это иррациональное число. Если эту самую диагональ отложить в числовом ряду от нуля, другой ее конец обозначит точку, соответствующую иррациональному числу – квадратному корню из двух. Запретив обсуждение иррациональных чисел – они не вписывались в его представления о том, что все числа обязаны быть либо целыми, либо дробными, – Пифагор был вынужден запретить и ассоциацию прямой с числом. Таким способом он замел эту неувязку под ковер – и придушил тем самым одну из самых плодотворных идей в истории человеческой мысли. У всех свои недостатки.
Одним из немногих преимуществ утери греческих трудов стал упадок влияния пифагоровых представлений об иррациональных числах. Теория иррациональных чисел не получила твердого фундамента аж до самого Георга Кантора и работ его современника Рихарда Дедекинда – в XIX веке. И тем не менее, со Средних веков и до Дедекинда и Кантора большинство математиков и ученых закрывали глаза на кажущееся несуществование иррациональных чисел и вполне счастливо, хоть и неумело, все равно их применяли. Очевидно, радость получения правильного ответа перевешивала неприятности работы с числами, которых не существует.
В наше время применение «нелегальной» математики – общее место науки, особенно физики. Теория квантовой механики, например, разработанная в 1920–1930-х годах, очень полагалась на нечто придуманное английским физиком Полем Дираком – дельта-функцию. Согласно математике того времени, дельта-функция попросту равнялась нулю. По Дираку же, дельта-функция равна нулю всюду, кроме одной точки, где ее значение – бесконечность, и, если применить эту функцию вместе с определенными методами счисления, она дает ответы одновременно и конечные, и (обычно) отличные от нуля. Позднее французский математик Лоран Шварц смог доказать, что правила математики можно переформулировать так, чтобы допустить существование дельта-функции, и из этого доказательства родилась целая новая область математики[103]. Квантовые теории поля в современной физике в этом смысле тоже можно считать «нелегальными» – во всяком случае, никто пока не смог успешно доказать, говоря математически, что такие теории существуют «по правилам».
Конец ознакомительного фрагмента.