Размер шрифта
-
+

Что делать, когда машины начнут делать все. Как роботы и искусственный интеллект изменят жизнь и работу - стр. 26

Следовательно, легко поверить обеим сторонам спора об исчезновении видов работ. Заглянув недалеко вперед (через следующие три года), человек может подумать: «Не может быть, чтобы наш финансовый отдел был замещен автоматами». Хотя, чтобы понять возможности платформ ИИ, стоит заглянуть на пятнадцать лет вперед и подумать: «Не может быть, чтобы к 2030 году у нас было больше пары человек, обрабатывающих клиентские счета».

Ключ к постановке реалистичных временных рамок:

а) во взгляде на работу как на набор задач;

б) в ценности остающихся человеческих единиц.

Глядя на эти две переменные, мы можем начать делать основательные прогнозы, как скоро боты начнут съедать определенные профессии.

Идти ВПЕРЕД во времена перетряски

Завершая разбор этой уничтожающей рабочие места природы новых машин, надо сказать, что намеченные нами перспективы – суть оставшейся части книги. В следующих главах мы исследуем практическое приложение этих динамических сил и то, что они будут значить для вас и вашей организации. В главе 7 мы более глубоко исследуем автоматизацию, рассмотрев конкретные процессы, функции и рабочие обязанности в вашей компании, наиболее близкие к тому, чтобы их забрали новые машины. Прочитав эту главу, можно подумать: «Тамара в бухгалтерии в опасности, если не будет быстро реагировать». В главе 9 мы обозначим профессии, которые находятся в безопасности и будут расширены. В главах 10 и 11 посмотрим на создание совершенно новых вакансий в связи с современным изобилием, процессом изобретений и открытий.

Однако, прежде чем приступить к определению будущего работы, нужно внимательно посмотреть на новые машины, которые станут драйвером всех этих перемен.

Глава 4

Новая машина: Интеллектуальные системы

Возможно, иногда вас удивляет то же, что и нас: «Как Uber всегда удается находить машину, если я в каком-то случайном закоулке в пятистах милях от дома, а затем автоматически списывать деньги с карты, высылать счет и отмечать мой пассажирский рейтинг – и все за секунды?» или «Как я могу смотреть видео на YouTube на мобильном устройстве, двигаясь в поезде со скоростью 130 миль в час?».

Две этих ситуации, два момента «чуда», которые уже стали обыденными, еще несколько лет назад были бы невозможны. Удивительно то, что и Uber, и YouTube, несмотря на то что предлагают совсем не похожие услуги, выполняют свои операции на «машинах» с практически одинаковыми компонентами. Эта новая машина, та, что мы зовем «интеллектуальной системой», быстро становится краеугольным камнем для компаний, конкурирующих в наукоемкой среде. Она в центре Facebook, Instagram, Google, Е-Trade, Betterment и всех прочих сегодняшних цифровых лидеров.

Однако при всей значимости новые машины по-прежнему остаются во многом непонятыми. Многие из нас активно потребляют результаты действия интеллектуальных систем, не останавливаясь, чтобы задуматься, насколько актуальные, персонализированные и отборные возможности создаются и достаются нам.

В связи с этим в данной главе мы объясним, чем являются эти новые машины – каковы компоненты технологии, как сочетаются, на что похож хороший образец и каким образом они глубоко повлияют на будущее вашей работы.

Мы знаем, обзор может оказаться похожим на то, как вы учились водить, будучи подростком, и ваш дядя, откинув капот машины, объяснял, как все это работает. Некоторые уроки могут быть скучноватыми (например, «это карбюратор, это свечи зажигания»), но сейчас, пользуясь интеллектуальными системами на непрерывной основе, мы должны создавать и применять их в своих компаниях, чтобы добиться конкурентного преимущества, поэтому рабочие знания здесь очень важны.

Страница 26