Человек на все рынки: из Лас-Вегаса на Уолл-стрит. Как я обыграл дилера и рынок - стр. 58
Шеннон подробно допросил меня по всем пунктам, пытаясь не только понять, как именно я анализировал игру, но и найти возможные ошибки. Мои несколько минут превратились в полтора часа оживленной беседы, во время которой мы еще и пообедали в столовой МИТ. В заключение он сказал, что я, по-видимому, совершил значительное открытие в этой области и что дальнейшие исследования должны по большей части сводиться к уточнению деталей и истолкованию результатов. Он попросил меня изменить заглавие статьи – назвать ее «Благоприятная стратегия игры в “двадцать одно”», а не «Выигрышная стратегия для блэкджека», – так как такое, более уравновешенное, название будет более приемлемым для академической публикации. Поскольку место для публикаций в журнале было ограничено и каждый из членов Академии мог представить лишь определенное число страниц в год, я неохотно согласился с сокращениями, предложенными Шенноном. Мы договорились, что я немедленно пришлю ему конечную редакцию своей статьи для пересылки в Академию[59].
Когда мы вернулись к нему в кабинет, он спросил: «А другими азартными играми вы не занимаетесь?» Поколебавшись мгновение, я решил открыть ему свой великий секрет и объяснил, что рулетка предсказуема и я собираюсь построить миниатюрный компьютер, предсказывающий ее поведение, который можно будет носить, спрятав под одеждой. По мере того как я рассказывал о том, что мне уже удалось сделать, мы начали оживленно обмениваться идеями. Несколько часов спустя, когда кембриджское небо уже начинало темнеть, мы наконец разошлись в возбуждении от планов совместной работы, которая позволит нам победить эту игру.
Тем временем я собирался представить свою систему игры в блэкджек на ежегодной конференции Американского математического общества в Вашингтоне. Я отправил аннотацию своего доклада под названием «Формула Фортуны: игра в блэкджек» для включения в брошюру с программой конференции[60], где она должна была появиться среди множества аннотаций других, по большей части технических и сложных для понимания, докладов.
Когда отборочная комиссия получила мою аннотацию, она почти единодушно собиралась отвергнуть ее. Я узнал об этом впоследствии от Джона Селфриджа, знакомого мне по УКЛА специалиста по теории чисел, который был членом этой комиссии. Одно время он был обладателем мирового рекорда в качестве первооткрывателя самого большого простого числа (простым называют положительное целое число, которое делится только само на себя и на единицу; первые несколько простых чисел – 2, 3, 5, 7, 11, 13…). К счастью, Селфридж убедил их в том, что я – серьезный математик и что если я утверждаю, что что-то истинно, то так оно, скорее всего, и есть.
Почему же комиссия собиралась отвергнуть мой доклад? Профессиональные математики регулярно сталкиваются с людьми, утверждающими, что им удалось решить какую-либо знаменитую задачу. Такие решения чаще всего оказываются произведениями сумасшедших или дилетантов, не знающих о результатах, уже полученных в математике, или же содержат простейшие ошибки в доказательствах. Так называемые решения часто касаются задач, давно и основательно признанных неразрешимыми, как, например, поиски способа трисекции (разделения на три равные части) произвольного угла при помощи циркуля и линейки. В курсе планиметрии изучается простой способ бисекции (разделения на две равные части) угла таким образом. Но небольшое изменение задачи, переход от деления на две части к делению на три, превращает простую задачу в неразрешимую.