Размер шрифта
-
+

Человеческие сети. Как социальное положение влияет на наши возможности, взгляды и поведение - стр. 14

Относительное сравнение Нэнси с Уорреном позволяет разрешить и другой вопрос. Давайте условимся, что центральность каждого из них пропорциональна сумме центральностей их друзей. Этот подсчет будет подобен тому, что уже проделан нами ранее. Тем самым Нэнси получит некоторую долю очков Эллы и Майлса – из-за того, что будет учтена некоторая доля очков их друзей, и так далее. Эти повторные операции будут подобными, потому что Элла и Майлс получают очки от своих друзей, которые приходятся друзьями второй степени Нэнси, а те очки получены от их друзей, которые приходятся Нэнси друзьями третьей степени, и так далее{26}.

По счастью, система уравнений такого типа – когда центральность каждого человека пропорциональна сумме центральностей его друзей – вполне естественная и легкорешаемая математическая задача. Она появилась благодаря ряду научных работ известнейших математиков, живших с XVIII по ХХ век: это Эйлер, Лагранж, Коши, Фурье, Лаплас, Вейерштрасс, Шварц, Пуанкаре, фон Мизес и Гилберт. Гилберт назвал решения подобных задач “айген-векторами”, или “собственными векторами”, и это общепринятое современное название. Неудивительно, что собственные вектора фигурируют во всевозможных областях, от квантовой механики (уравнение Шрёдингера) до алгоритма eigenface, содержащего основные строительные блоки для программ распознавания лиц. Решая задачу собственного вектора в нашем примере, мы приходим к ответу: количество баллов у Нэнси приблизительно в 3 раза больше, чем у Уоррена, что мы и видим на рисунке 2.6{27}.


Рис. 2.6. Центральности по собственному вектору для каждого узла (человека). У Нэнси почти в 3 раза больше баллов, чем у Уоррена, хотя у обоих имеется одинаковое количество связей. Больше всего баллов у Майлса, хотя у Эллы наибольшая центральность по степени.


Инновация Брина и Пейджа заключалась в том, чтобы выстраивать веб-страницы согласно алгоритму, который они назвали PageRank. Он имеет прямое отношение к тому, что мы описали выше, и к вычислению собственного вектора. Правда, Брин и Пейдж не собирались распространять слухи по сети, но перед ними стояла сходная итеративная задача – так называемая задача случайного пользователя. Интернет-пользователь начинает с какой-то одной страницы, а затем случайным образом переходит оттуда по ссылке на другую страницу, причем он может с одинаковой вероятностью выбрать любую из ссылок. Затем все повторяется – пользователь таким же случайным образом блуждает по Сети{28}. Со временем, если мы вычислим относительное количество раз, которое пользователь посещает каждую страницу, мы получим собственный вектор. В этом случае баллы, которые присваиваются на каждом этапе, пропорциональны количеству ссылок, имеющихся на каждой странице.

Перед Брином и Пейджем стояли две трудности. Умозрительная задача – найти наиболее значимые страницы – решалась уже известным нам путем: следовало не смотреть на популярность страниц, а просчитывать, насколько хорошо они обеспечены связями в этом итеративном, айген-векторном смысле. Более практическая задача заключалась в том, чтобы внедрить этот принцип в колоссальном масштабе всей Паутины, а это значило, что нужно облазить всю сеть и проиндексировать страницы, накопить данные о содержании каждой страницы и об имеющихся на ней ссылках, а затем произвести итеративные вычисления, чтобы определить их сетевое положение. Одно дело – производить подобные расчеты для Нэнси и Уоррена в нашей маленькой сети, показанной выше, и совсем другое – проделывать то же самое для миллиардов страниц, тем более что они постоянно меняют содержание и ссылки.

Страница 14