Бозон Хиггса. От научной идеи до открытия «частицы Бога» - стр. 15
Однако уравнения Максвелла имеют дело с полями, которые генерирует электрический заряд, а не с самим зарядом. Они тесно связаны, но уравнения в принципе не позволяют понять причины сохранения заряда. В свете теоремы Нетер поиск законов, управляющих электрическим зарядом, стал поиском глубинного непрерывного преобразования симметрии, относительно которой законы инвариантны.
Поиск продолжил немецкий математик Герман Вейль.
Вейль родился в 1885 году в Эльмсхорне, городке недалеко от Гамбурга, и получил докторскую степень под руководством Гильберта в Геттингене в 1908 году. Затем он получил должность профессора в Швейцарской высшей технической школе Цюриха, где познакомился с Альбертом Эйнштейном и где его увлекли вопросы математической физики.
Работая над общей теорией относительности в 1915 году, Эйнштейн отказался от всякого понятия абсолютного пространства и времени. Он утверждал, что физика, напротив, должна быть основана исключительно на расстояниях между точками и искривлении пространства-времени в каждой точке. Этот эйнштейновский принцип общей ковариантности и вытекающая из него теория гравитации инварианты произвольным изменениям системы координат. Иными словами, хотя существуют физические законы природы, во Вселенной не существует «природной» системы координат. Мы сами изобретаем системы координат, которые помогают описывать физические явления, но законы не должны зависеть (и не зависят) от этого произвольного выбора.
Есть два способа изменить систему координат. Можно сделать глобальное изменение, которое применяется одинаково ко всем точкам пространства и времени. Пример такого глобального преобразования симметрии – это равномерный сдвиг параллелей и меридианов, которые используют картографы для составления карт земной поверхности. Если изменение одинаково везде и применяется последовательно по всему земному шару, это никак не повлияет на нашу способность дойти из одной точки в другую.
Но изменения бывают и локальными, отличающимися для разных координат в разных точках пространства-времени. Например, в одной части пространства мы могли бы повернуть оси нашей системы координат под небольшим углом и в то же время изменить масштаб. При условии, что это изменение транслировано вплоть до меры различий в положении и времени, оно не влияет на предсказания общей теории относительности. Следовательно, общая ковариантность – это пример инвариантности локального преобразования симметрии.
Вейль долго и упорно размышлял над теоремой Нетер и работал над теорией групп непрерывного преобразования симметрии, называемых группами Ли в честь норвежского математика XIX века Софуса Ли. В 1918 году он пришел к выводу, что законы сохранения связаны с локальными преобразованиями симметрии, которые он назвал общим термином калибровочная симметрия – довольно непонятным, к сожалению. Руководствуясь трудами Эйнштейна, он рассматривал симметрию в отношении расстояния между точками в пространстве-времени, как в примере с поездом, движущимся по рельсам, и неподвижным измерительным прибором.
Вейль нашел, что, обобщив принцип общей ковариантности до калибровочной инвариантности, он мог использовать теорию Эйнштейна как основание для того, чтобы вывести уравнения Максвелла. Казалось, он открыл теорию, которая могла объединить два взаимодействия, известные в то время науке, – электромагнитное и гравитационное. Тогда инвариантность, тождественная законам сохранения, была бы связана с произвольными изменениями «калибровки» полей. Таким образом Вейль надеялся продемонстрировать сохранение энергии, импульса и момента импульса