Размер шрифта
-
+

Библиотеки Python Часть 2. Практическое применение - стр. 3

spark = SparkSession.builder.appName("LogAnalysis").getOrCreate()

# Загрузка данных из CSV-файла

df = spark.read.csv('server_logs.csv', header=True, inferSchema=True)

# Фильтрация строк с ошибками

errors = df.filter(df['status'] == 'ERROR')

# Подсчет количества ошибок

error_count = errors.count()

print(f"Количество ошибок: {error_count}")

# Завершаем сессию Spark

spark.stop()

```

Объяснение:

– `filter` позволяет выбрать строки с определенным значением.

– `count` подсчитывает количество строк после фильтрации.


Задача 4: Средняя сумма покупок

Описание: Дан CSV-файл с данными о покупках. Ваша задача – вычислить среднюю сумму покупок для каждого клиента.

Решение:

```python

from pyspark.sql import SparkSession

# Создаем сессию Spark

spark = SparkSession.builder.appName("PurchaseAnalysis").getOrCreate()

# Загрузка данных

df = spark.read.csv('purchases.csv', header=True, inferSchema=True)

# Группировка по клиенту и расчет средней суммы покупок

avg_purchases = df.groupBy('customer_id').avg('purchase_amount')

# Показ результатов

avg_purchases.show()

# Завершаем сессию Spark

spark.stop()

```

Объяснение:

– `groupBy` позволяет сгруппировать данные по столбцу.

– `avg` вычисляет среднее значение для каждой группы.


Задача 5: Сортировка больших данных

Описание: У вас есть файл с информацией о транзакциях. Необходимо отсортировать данные по дате транзакции и сохранить результат в новый файл.

Решение:

```python

from pyspark.sql import SparkSession

# Создаем сессию Spark

spark = SparkSession.builder.appName("SortTransactions").getOrCreate()

# Загрузка данных

df = spark.read.csv('transactions_large.csv', header=True, inferSchema=True)

# Сортировка данных по дате

sorted_df = df.orderBy('transaction_date')

# Сохранение отсортированных данных в новый файл

sorted_df.write.csv('sorted_transactions', header=True, mode='overwrite')

print("Данные отсортированы и сохранены.")

# Завершаем сессию Spark

spark.stop()

```

Объяснение:

– `orderBy` сортирует данные по указанному столбцу.

– `write.csv` сохраняет результат в новом файле.

Эти задачи демонстрируют, как использовать Dask и PySpark для работы с большими объемами данных.

– Dask подходит для локальных задач и интеграции с Python-библиотеками.

– PySpark эффективен для кластерной обработки данных и интеграции с экосистемой Hadoop.

Обе библиотеки упрощают решение задач, которые сложно выполнить традиционными методами из-за ограничений памяти или мощности процессора.


1.2 Потоковая обработка данных с Apache Kafka

Apache Kafka – это мощная платформа для обработки потоков данных в реальном времени. Она широко используется для обработки и анализа событий, поступающих из различных источников, таких как веб-серверы, базы данных, датчики IoT, системы мониторинга и многое другое. Kafka обеспечивает высокую производительность, надежность и масштабируемость, что делает её одним из лучших инструментов для потоковой обработки данных.

В основе Apache Kafka лежат несколько ключевых компонентов:

1. Брокеры – серверы, которые принимают, хранят и доставляют данные.

2. Топики – логические каналы, через которые данные передаются.

3. Продюсеры – приложения или устройства, которые отправляют данные в Kafka.

4. Консьюмеры – приложения, которые получают данные из Kafka.

Kafka организует поток данных в виде последовательностей сообщений. Сообщения записываются в топики и разделяются на партиции, что позволяет обрабатывать данные параллельно.

Страница 3