Размер шрифта
-
+

Ātrā matemātika verbālās skaitīšanas noslēpumi - стр. 14



Divkāršošana un samazināšana uz pusi



Lai kā atsauces skaitļus izmantotu 20 un 50, jums ir jāspēj viegli dubultot un samazināt skaitļus uz pusi.

Reizēm, kad, piemēram, mums ir jādala uz pusēm divciparu skaitlis, kura desmitnieku skaitlis ir nepāra, atbilde pati par sevi neliecina. Piemēram:

78: 2 =

Lai uz pusi samazinātu 78, varat dalīt 70 ar 2, pēc tam 8 un pēc tam pievienot rezultātus. Bet ir vēl vienkāršāks veids.

78 = 80—2. Puse no 80 – 2 ir vienāda ar 40 – 1. Šī ir atbilde:

401 = 39

Lai dubultotu 38, garīgi iedomājieties šo skaitli kā 40 – 2. Divkāršot vērtību, tā būs 80 – 4, tas ir, 76.

Mēģiniet pats atrisināt šādus piemērus:

a) 38 x 2 = ___; b) 29 x 2 = ___; c) 59 x 2 = ___; d) 68 x 2 = ___; e) 39 x 2 = ___; e) 47 x 2 =

Atbildes:

a) 76; b) 58; c) 118; d) 136; e) 78; e) 94

Tagad atrisiniet šos piemērus:

a) 38: 2 = ___; b) 56: 2 = ___; c) 78: 2 = ___; d) 94: 2 = ___; e) 34: 2 = ___; e) 58: 2 = ___; g) 18: 2 = ___; h) 76: 2 = ___

Atbildes:

a) 19; b) 28; c) 39; d) 47; e) 17; f) 29; g) 9 h) 38

To pašu pieeju var izmantot, lai reizinātu un dalītu diezgan lielus skaitļus ar 3 un 4. Piemēram:

19 x 3 = (20 – 1) x 3 = 60 – 3 = 57

38 x 4 = (40 – 2) x 4 = 160 – 8 = 152



Numuri 200 un 500 kā atsauces numuri



Ja reizinātie skaitļi ir tuvu 200 vai 500, aprēķini nav īpaši sarežģīti, jo gan 200, gan 500 ir viegli izmantot kā atsauces skaitļus.

Kā, piemēram, atrodam produktu 216 x 216? Ja kā atsauci izmantojat 200, piemēru var viegli atrisināt, tostarp jūsu galvā:

Mēs aprēķinām 16 x 16, izmantojot 10 kā atsauces skaitli.

Kā ar 512x512?

512 x 500 ir vienāds ar 524 x 1000 dalīts ar 2.

524 x 1000 = 524 000 jeb 524 tūkst.

Puse no 524 tūkstošiem ir vienāda ar 262 tūkstošiem.

Lai 524 tūkstošus sadalītu uz pusēm, tos var sadalīt uz 500 tūkstošiem un 24 tūkstošiem. Pusi no abiem skaitļiem ir viegli aprēķināt galvā. Puse no 500 tūkstošiem ir vienāda ar 250 tūkstošiem. Puse no 24 tūkstošiem ir vienāda ar 12 tūkstošiem. 250 tūkstoši plus 12 tūkstoši dod 262 tūkstošus.

Tagad reizināsim skaitļus apļos:

12 x 12 = 144

262000 +144 = 262144 ATBILDE



Mazāku skaitļu reizināšana



Mēģināsim atrast produktu 6 x 4:

Kā atsauces skaitli izmantojam 10. Zem faktoriem ievelkam apļus, jo gan 6, gan 4 ir mazāki par 10. Atņem šķērsām:

6–6 = 0 vai 4–4 = 0

Tagad reizināsim skaitļus apļos:

4 x 6 =

Mēs esam atgriezušies pie sākotnējās problēmas (6 x 4). Šķiet, ka metode mums nekādi nepalīdzēja. Vai ir iespējams panākt, lai tas darbotos arī šādos gadījumos? Tas ir iespējams, taču šim nolūkam ir jāizmanto cits atsauces numurs. Mēģināsim pieņemt skaitli 5 kā tādu. 5 ir 10 dalīts ar 2, vai puse no 10. Visvieglāk reizināt ar 5 var, reizinot ar 10 un rezultātu dalot ar 2.

6 ir lielāks par 5, tāpēc mēs tam uzzīmējam apli. 4 ir mazāks par 5, tāpēc aplis tam tiek novilkts zemāk. 6 ir vairāk nekā 5 reizes 1, tāpat kā 4 ir mazāks par 5 reizi 1, tāpēc katrā aplī ierakstām 1.

Pievienojiet 4 un 1 šķērsām vai atņemiet 1 no 6:

6–1 = 5 vai 4 +1 = 5

Mēs reizinām 5 ar atsauces numuru, kas arī ir 5.

Lai to izdarītu, mēs vispirms reizinām ar 10, kas dod mums 50, un pēc tam rezultātu sadalām ar 2, iegūstot 25. Tagad mēs reizinām skaitļus apļos:

1 x -1 = -1

Tā kā rezultāts ir negatīvs skaitlis, mēs to atņemam no starpatbildes, nevis pievienojam tai:

251

Страница 14