Размер шрифта
-
+

Аналитика 360: Big Data и BI-системы, которые меняют игру - стр. 4

Интеллектуальные системы и машинное обучение

С наступлением эпохи больших данных и быстрого развития технологий искусственного интеллекта произошел переход к интеллектуальным системам, использующим машинное обучение и анализ данных в режиме реального времени. Эти системы могут не только обрабатывать огромные объемы информации, но и предсказывать будущие тенденции на основе исторических данных.

Объединение данных из различных источников, таких как устройства Интернета вещей, социальные сети и транзакционные системы, открыло новые горизонты для бизнеса. Например, компания, производящая электронику, интегрировала машинное обучение в процесс прогнозирования спроса, что позволило значительно уменьшить затраты на хранение и оптимизировать производственные процессы.

Заключение: вперёд к умным бизнес-решениям

Эволюция аналитики от простых таблиц к интеллектуальным системам подчеркивает важность правильного подхода к интеграции данных в бизнес-процессы. Современные компании должны учитывать не только технологии, но и методы обработки, анализа и использования данных для принятия обоснованных решений.

Рекомендуется создать стратегию данных, которая будет учитывать цели бизнеса и способы их достижения с помощью аналитических инструментов. Основными шагами для достижения результата являются: определение ключевых показателей эффективности, выбор подходящих технологий и регулярный пересмотр процессов на основе анализа данных.

Таким образом, аналитика становится неотъемлемой частью успешного бизнеса, а компании, внедряющие интеллектуальные решения, получают возможность привести свои стратегии к новым высотам.

Основные источники данных. От традиционных к цифровым

В современной бизнес-среде источники данных стали не просто элементом информационного потока, а краеугольным камнем аналитического процесса. Понимание того, откуда берутся данные и как их правильно использовать, определяет успешность компаний в условиях конкурентной борьбы. Эта глава посвящена изучению основных источников данных, от традиционных до цифровых, а также методам их интеграции и анализа.

Традиционные источники данных

Традиционные источники данных были основным ресурсом для аналитиков и бизнес-менеджеров на протяжении многих лет. К ним относятся:

1. Операционные системы: Это базы данных, формируемые при выполнении рутинных процессов – от учета продаж до управления запасами. Например, системы планирования ресурсов предприятия предоставляют обширную информацию о всех аспектах бизнеса, начиная от финансов и заканчивая производственными цепочками. Эффективное использование данных из таких систем формирует основу для анализа эффективности операций.

2. Опросы и анкеты: Применяемые для сбора информации о клиентах. Например, компании могут использовать анкеты для понимания потребительских предпочтений или уровня удовлетворенности. Организовать онлайн-опросы можно с помощью платформ, таких как Google Формы или SurveyMonkey, что сократит время и затраты на сбор обратной связи.

3. Финансовая отчетность: Данные о доходах, расходах, активах и обязательствах предоставляют возможность оценивать финансовое состояние компании и прогнозировать её будущие результаты. Для более точного анализа стоит применять инструменты визуализации, такие как Tableau или Power BI, чтобы наглядно представить данные.

Страница 4