120 практических задач - стр. 23
2. Компиляция и обучение: Модель компилируется с использованием оптимизатора Adam и функции потерь MSE (Mean Squared Error), затем обучается на обычных (нормальных) образцах.
3. Определение порога для обнаружения аномалий: После обучения модели рассчитывается среднеквадратичная ошибка (MSE) между входными данными и их реконструкциями. Затем определяется порог, например, на основе перцентиля ошибок, для обнаружения аномальных образцов.
4. Обнаружение аномалий: Образцы, для которых ошибка восстановления выше заданного порога, считаются аномальными.
Преимущества использования автоэнкодеров для обнаружения аномалий
– Не требуется разметка данных: Автоэнкодеры могут обучаться без размеченных данных, что упрощает процесс обнаружения аномалий.
– Универсальность: Могут использоваться для различных типов данных, включая структурированные данные, изображения и текст.
– Высокая чувствительность к аномалиям: Автоэнкодеры могут выявлять сложные и неочевидные аномалии, которые могут быть пропущены другими методами.
Этот подход к обнаружению аномалий является эффективным инструментом для финансовых институтов и других отраслей, где важно быстро выявлять подозрительные или необычные события в данных.
15. Прогнозирование погоды с использованием LSTM сети
– Задача: Анализ временных рядов метеорологических данных.
Прогнозирование погоды с использованием LSTM (Long Short-Term Memory) сети – это задача анализа временных рядов, которая требует учета зависимостей в данных со временем, таких как температура, влажность, давление и другие метеорологические параметры. LSTM, как тип рекуррентной нейронной сети, хорошо подходит для работы с последовательными данных, сохраняя информацию на длительные временные интервалы.
Построение LSTM сети для прогнозирования погоды
1. Подготовка данных
Прежде всего необходимо подготовить данные:
– Загрузить и предобработать временные ряды метеорологических данных.
– Разделить данные на обучающую и тестовую выборки.
– Масштабировать данные для улучшения производительности обучения модели.
2. Построение модели LSTM
Рассмотрим архитектуру LSTM сети для прогнозирования погоды:
– LSTM слои: Используются для запоминания и учета долгосрочных зависимостей в данных о погоде.
Пример архитектуры нейронной сети для прогнозирования погоды:
```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
# Пример построения LSTM модели для прогнозирования погоды
# Подготовка данных (вымышленный пример)
# Загрузка и предобработка данных
# Пример данных (вымышленный)
# Здесь данные должны быть загружены из вашего источника данных
# Давайте представим, что у нас есть временной ряд температур
data = pd.DataFrame({'date': pd.date_range('2022-01-01', periods=365),
'temperature': np.random.randn(365) * 10 + 20})
# Масштабирование данных
scaler = MinMaxScaler(feature_range=(0, 1))
scaled_data = scaler.fit_transform(data['temperature'].values.reshape(-1, 1))
# Формирование датасета для LSTM
def create_dataset(data, look_back=1):
X, Y = [], []
for i in range(len(data) – look_back – 1):
X.append(data[i:(i + look_back), 0])
Y.append(data[i + look_back, 0])