Размер шрифта
-
+

120 практических задач - стр. 23

2. Компиляция и обучение: Модель компилируется с использованием оптимизатора Adam и функции потерь MSE (Mean Squared Error), затем обучается на обычных (нормальных) образцах.

3. Определение порога для обнаружения аномалий: После обучения модели рассчитывается среднеквадратичная ошибка (MSE) между входными данными и их реконструкциями. Затем определяется порог, например, на основе перцентиля ошибок, для обнаружения аномальных образцов.

4. Обнаружение аномалий: Образцы, для которых ошибка восстановления выше заданного порога, считаются аномальными.

Преимущества использования автоэнкодеров для обнаружения аномалий

– Не требуется разметка данных: Автоэнкодеры могут обучаться без размеченных данных, что упрощает процесс обнаружения аномалий.

– Универсальность: Могут использоваться для различных типов данных, включая структурированные данные, изображения и текст.

– Высокая чувствительность к аномалиям: Автоэнкодеры могут выявлять сложные и неочевидные аномалии, которые могут быть пропущены другими методами.

Этот подход к обнаружению аномалий является эффективным инструментом для финансовых институтов и других отраслей, где важно быстро выявлять подозрительные или необычные события в данных.

15. Прогнозирование погоды с использованием LSTM сети

– Задача: Анализ временных рядов метеорологических данных.

Прогнозирование погоды с использованием LSTM (Long Short-Term Memory) сети – это задача анализа временных рядов, которая требует учета зависимостей в данных со временем, таких как температура, влажность, давление и другие метеорологические параметры. LSTM, как тип рекуррентной нейронной сети, хорошо подходит для работы с последовательными данных, сохраняя информацию на длительные временные интервалы.

Построение LSTM сети для прогнозирования погоды

1. Подготовка данных

Прежде всего необходимо подготовить данные:

– Загрузить и предобработать временные ряды метеорологических данных.

– Разделить данные на обучающую и тестовую выборки.

– Масштабировать данные для улучшения производительности обучения модели.

2. Построение модели LSTM

Рассмотрим архитектуру LSTM сети для прогнозирования погоды:

– LSTM слои: Используются для запоминания и учета долгосрочных зависимостей в данных о погоде.

Пример архитектуры нейронной сети для прогнозирования погоды:

```python

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.preprocessing import MinMaxScaler

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, Dense, Dropout

# Пример построения LSTM модели для прогнозирования погоды

# Подготовка данных (вымышленный пример)

# Загрузка и предобработка данных

# Пример данных (вымышленный)

# Здесь данные должны быть загружены из вашего источника данных

# Давайте представим, что у нас есть временной ряд температур

data = pd.DataFrame({'date': pd.date_range('2022-01-01', periods=365),

'temperature': np.random.randn(365) * 10 + 20})

# Масштабирование данных

scaler = MinMaxScaler(feature_range=(0, 1))

scaled_data = scaler.fit_transform(data['temperature'].values.reshape(-1, 1))

# Формирование датасета для LSTM

def create_dataset(data, look_back=1):

X, Y = [], []

for i in range(len(data) – look_back – 1):

X.append(data[i:(i + look_back), 0])

Y.append(data[i + look_back, 0])

Страница 23